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Abstract. Scattering of Rayleigh-Lamb waves by a normal surface-breaking crack in a
plate has been studied both theoretically and experimentally. The two-dimensionality of
the far field, generated by a ball impact source, is exploited to characterize the source
function using a direct integration technique. The scattering of waves generated by this
impact source by the crack is subsequently solved by employing a Green's function
integral expression for the scattered field coupled with a finite element representation of
the near field. It is shown that theoretical results of plate response. both in frequency
and time, are similar to those obtained experimentally. Additionally, implications for
practical applications are discussed. ,. "

DTBI TON 9'T.".

Introduction D .- : , . -

Propagation of guided Rayleigh-Lamb waves in a plate is of interest in seismol-
ogy, electrical devices, ultrasonic material characterization, and ultrasonic
nondestructive evaluation of defects. There have been numerous investigations
of this problem since the early works of Rayleigh and Lamb, and reviews of the
early literature can be found [1, 2]. In recent years attention has been focused
on the surface response of a plate due to buried or surface sources in the
context of acoustic emission. The direct problem of the response of a plate due
to various sources has been studied by many authors [3-101 for the purpose of
analyzing signals from acoustic emissions. Experimental measurements of sur-
face response due to normal force sources acting on a plate have also been
examined [10-161. In this paper we have theoretically studied the surface re-
sponse of a plate due to a vertical transient line force acting on the surface of
the plate. The problem is considered to be two-dimensional, i.e., plane strain.
The model studied is a simulation of the rs~q'ental set-up shown in Fig. I.
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Fig. 1. The glass specimen with support structure and ball drop source apparatus. The structure
supports the 25.4 mm by 5.6 mm by 2.28 m specimen but is mechanically decoupled by a high
attenuation, impedance mismatch urethane foam. This minimizes the loss of energy to the support-
ing structure while isolating the specimen from external vibrations. Aluminum coated microscope
slides are glued to the sample surface to provide the electrically conductive and smooth surface
required by the sensor.

Theoretical Formulation and Solution

The response of an elastic plate due to an appied source of excitation is charac-
terized by the type of source. Theoretical knowledge of response due to known
sources helps in identifying source functions generated in experimental set-ups,
or in practical applications. Characterizing a physical source in a numerical
form is a necessary step towards analyzing the scattered field for nondestruc-
tive evaluation of defects in a plate.

The propagation of waves in elastic plates has long been studied by many
authors. Mindlin [1] gave a thorough discussion of the solutions to the govern-
ing equations of wave propagation in isotropic plates. Since then, many studies
have been reported on the forced motion of a plate. Recently transient wave
propagation in an infinite plate due to a point source was studied by Ceranoglu
and Pao [2]. They employed a generalized ray theory to compute the desired
response; however, this method is very cumbersome when considering re-
sponses in the far field, i.e., several plate thicknesses away from the source. To
avoid this difficulty Weaver and Pao [8] used a normal mode analysis to analyze
responses in the far field. The response of a finite plate was described by a
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double summation over wave number and eigenfrequencies. Letting the radius
approach infinity, the summation over wave number gets replaced by its indefi-
nite integral. Vasudevan and Mal [9] presented a method based on the classical
integral transform technique. The response at a particular frequency is ob-
tained by using the method of residues at the poles (real, imaginary, and com-
plex) which represent the modes of propagation discussed in [1]. Finally, an
inverse fast-Fourier-transform (FFT) is used to obtain the time response of the
plate.

In this work we consider the two-dimensional problem of a uniform line
force acting on one fact of a plate. The response of the plate due to an impulsive
load is written in the form of a double integral over the frequency and wave
number. For any frequency, direct integration is carried out with respect to the
real wave number after adding a small imaginary part to the real frequency. The
Fourier spectrum of the experimentally generated source function is then ob-
tained by calculating the ratio of the observed response and the input response.
The corresponding representation in time domain is then carried out by taking
the inverse FFT of the frequency response. This numerical representation of
the source function is used to study the scattering of waves by a normal surface
crack in a plate.

Evaluation of Green's Function

The Green's function for a medium, Gij(x, z, t; x', z', 0), is defined as the
displacement in the th direction produced at a point (x, z) at time t by an
impulsive line force of unit magnitude acting at t = 0 in the jth direction. For
computing Go we consider the source to be uniform along the y-axis, i.e., we
assume the problem to be a 2-D plane strain problem. In index notation the
Green's displacement vector Gj must satisfy the equation of motion:

SV2Gj + (X + A)VV • G, = pG - ejS(t) 8 (x - x')8(z - z'),j 1, 3. (1)

Assuming the displacement vector to be of the form

Gj = Vbj + VA(O[e2), (2)

one gets

Gj = 3x az

j= + ax, (3)

where Oj and tJj satisfy the differential equations (except at x', z'):

i I

C2 = (A + 2,u)/p, C2 = Ip.
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For generality, let us consider n plates of equal thickness h that are welded
together with the top and bottom surfaces being traction free (See Fig. 2). In
order to solve for the Green's displacement, Gj, in the n-layered plate we take
the time dependence first in the form e-i-, where w is circular frequency.
Furthermore, we write

D, = 7 , 4e ik dx

11= f_ I'e l dx. (4)

Then it is easily shown that within the mth layer Fj and 'Pj can be written as

)j = Aj2ei"-z + njein.(h-,) + ST (5)

"PT = Aj e '7 z + Bje ' (h-z) + STj (6)

where

'i, = Vkm -k2, 712m = Nk,, - k2,

kim = w/Ci, k2m = WIC2m

ST and T7 depend on the direction and location of the applied unit load. For a
force in the z-direction acting at (x', z') they are described as

Sj = +A3me inh ' IZ-:'I

TT = B3mei nq- z- z'l (7)
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where

A 3m" - e -C B 3m =K e-"
(2 .k'2j,,) "zm (21.L k2m)

In the above the ± signs correspond to z > or < z', respectively. Similarly, for
a force in the x-direction at (x', z') we get

I A le i,9,Jz- ' I
T m, = +-Blmeim ' ' lz - z ' 1 (8)

with

A 1m (2Mmk) B"- (2 mky

If there is no applied load in the mth layer, then S = Tj' = 0. Note that in
writing the above solution a local coordinate system has been chosen with the
origin on the top of the layer.

The stresses associated with the Green's displacement Gj' are calculated
from the stress-strain relations. The relevant stress components needed to
satisfy the continuity conditions at the interface and the free-surface conditions
are

Im = Ama Gm + a G

-Ezj " = XmV " Gj + 2/G,,, Z GT. (9)

Using Eqs. (5) and (6) in Eq. (3), and in Eq. (9), the Fourier transforms of

the displacement-stress vector in the mth layer can be written in matrix form as

[U7'(z)I = [lM(z)[X2] + [ YjM], (10)

where
[Uj-(z)]=[G6T, Gm," i--, im " ] r

[XjJ = [A"C'CfBfDmTj

Expressions for I" and Y7' are given in Appendix I. TheJrepresents the Fourier
transform of f(x).

The boundary conditions to be satisfied by [Uj are

±1zi= ±1=O0at z =0 01)
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[U7(h)] = [U2"+(O)], m = 1, ..., n - 1 (12)

= ±X' 0 at z = h (13)

These give 4n conditions for the 4n unknown constants [X'], m - l. n.
Assembling the Eqs. (I 1)-(13) into a global matrix we obtain the matrix

equation

tl[X] = [Y] (14)

where [F] is a 4n x 4n matrix,

[X] = [AJ,CJ,BJ,DJ. .... A,C,Bj,D] T and [ YI = r, .. . , yy, 1 )T

with
rr, = I - Y(3), - Y(4)]'=

gg,,+, = [- g(3),-Y "( r~

YYm = fY7mjz=o-Yj- '=hjT , m = 2, ... , n.

Note that YYj and YY,,+n are 2 x I matrices and the rest are 4 x 1.
Solving Eq. (14) for [XI we obtain all of the constants. Once these con-

stants are known the displacements and stresses at any point can be found. It
may be noted that setting the determinant of [F] to zero gives the dispersion
equation that relates the frequency k2l to the wave number k. This has been
discussed recently by Mal [17].

Extraction of the Source Function

We shall now focus our attention on a single homogeneous plate and obtain an
expression for the z-component of the displacement at z = 0 for a vertical load
also acting at z = 0. This will be denoted by D(x, x', f) for a particular
frequency w = 27rf, f being measured in cycles per second. Following the
procedure for an n-layered plate we get the four constants Al, C, and D3.
Using these constants we find from Eqs. (5), (6) and (3) (see also Achenbach
(181):

D(x, x';f) f J {2IhA + 1 2C 12 B3 + 124D3 + Y2}jz=, =0e/i' dk (15)

where A3, ..., D' are the solutions to the equation

ae"' -ce"2lh A3 3 aAl+ cB 3'
-a -bei7 ,,h -ae2Ih J C 3 -bA 3 1 + aB 3'

aei711h ceilhlI a -/ 1 aAllei'h + cB 31eAe2'h

kbei 'llh - ae'71' -b -a J D3 I-bA3 ei'h,' + aB 31ei'12,h
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The integration is done numerically according to an adaptive scheme that is
a modification of one by Xu and Mal [19]. Using this scheme we evaluate
displacements and stresses as a function of k 2 at any point (x, y) for a source at
(x', z') in the plate. The results of integration were checked for some arbitrary
frequencies with those obtained by the method of modal summation. In this
particular problem, since the source and receiver are at the top surface, z and z'
are zero.

Experimentally we measure the time responses of normal surface displace-
ments at the receivers r, and r2 that are distances d, and d2 from the source,
respectively. The source is considered to be a line source S uniform along the
width of the plate and acting in the z-direction. We then obtain the correspond-
ing frequency responses R,(f) and R 2(f) by means of an FFT. Now, the re-
sponse at a frequency f, R(f) at the point (x, 0) is given by S(f)*D(f), where
S(f) is the frequency response of the source and D(f) is given by Eq. (15). We
obtain D(f) analytically and hence, compute S(f) from the observed R(f).
Thus we get S for discrete frequenciesf = n X Af, where n = 1, 2 ... , m, m =
21, 1 an integer, and Af = IT, T being the length of the time window. This
S(f), which is a complex number, represents the source function in the fre-
quency domain. The corresponding time representation of the source is ob-
tained by taking the inverse FFT. For two different observation points the time
signals measured by the receivers at (xi, 0) and (x2, 0) are labeled as T, and T2,
respectively, with their corresponding frequency spectra as R,(f) and R 2(f).
From the theoretically computed DI(f) and D2(f) at these points, since

S,(f) = Rj(f)ID,(f), S2(f) - Ri(f)/D2(f),

we thereby obtain the source function from observations at different receiver
positions. Since the source remains the same for both the receiver positions,
S,(f) and S2(f) should be identical, at least in theory. In practice, they are
found to agree extremely well when the receivers are more than a few plate
thicknesses away, (i.e., more than 3H). Note that we did not evaluate the
source functions at zero frequency, so the corresponding time representation of
the source will have an inhercnt DC component.

The positions of the receivers considered in this work are x, = 5H and x, =
8H. Since the time signals do not decay sufficiently at the end of the time
window, a window is used on the experimental time signals to force them to
decay. The window used is cos(i nr/(2n)), where i = 1.2 ... , n, n was taken to
be 512. This window is imposed on all of the experimental time signals for
computational purposes. Additionally, zere's were added to the time signals to
increase the length of the signals by a factor of 2. This introduction of zero's
enables the Af to be reduced by a factor of 2, for increased numerical accuracy,
without sacrificing the integrity of the information contained in the signal.

Scattering by a Surface-Breaking Crack

The problem of scattering of incident body waves by a surface-breaking crack
is solved by employing a hybrid method which combines the advantages of the
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finite element technique and the boundary integral method. The details of the
hybrid method are discussed by Khair et al. [20, 211, who considered scattering
in a semi-infinite medium. For this purpose we consider two artificial bound-
aries C and B (Fig. 3). The medium is now divided into two regions. The
interior region R, is bounded by B, and the free surface. The exterior region R0
is bounded by the free surface, the boundary C, the boundary z = H and
extends to infinity in the - x directions. The area between C and B is shared by
both regions. In regions R0 and R, the governing equation of elastic motion is
written as, assuming the time dependence e"' ,

T,, + pw 2U, 0 O, i,j = 1, 3 (16)

where Ty is the stress tensor, p the mass density and Uj the ith displacement
component. Solution to Eq. (16) satisfying the stress-free boundary conditions
along the surface of the half-space and the crack surface is sought.

Solution in the Exterior Region Ro

In this region the displacement is composed of two parts.

Ui= U=°0  + U(S) (17)

where UP° (i = 1, 3) represents the free field displacement components (the
incident field due to the line load) and U is the scattered field. The scattered
displacement field in R0 is represented by a surface integral [20], after dropping
the factor e -iw ,

U5,,(x,, z') = f (GjTik - UYXuk)nk dS (18)

Here Go is the previously described Green's displacement tensor and nk defines
the components of the outward unit normal vector to C. The integration along
C is carried out in the clockwise direction.
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Solution in the Interior Region R,

This region is divided into finite elements having N number of interior nodes
and NB number of boundary nodes. For the finite element representation in
region R, the energy functional is taken to be

1/2ff [T - pw 2U U*]dA - l/2f8 [t," U- + t*" UBI dS (19)

where * denotes complex conjugate and T, L are stress and strain vectors
defined as

T = [Tax, T", TXJT (20)

_ = [exx, Cuz, xz]T .  (21)

Superscript T denotes transpose. tB and UB denote the traction and displace-
ment at contour B, respectively. It is assumed that the displacement field within
an element is represented in terms of the shape functions 4)1(x, z) and elemental
nodal displacements U01as

n

uie) = l (i 1, 3) (22)

The number of nodes in each element is given by n. Substituting Eq. (22) into
the strain-displacement relations and these, in turn into the stress-strain rela-
tions provides P0 and e0. Substituting these in Eq. (19) and taking its varia-
tion, the equation of motion for region R, can be written as

FS11 S I Ufl (
I = 1 (23)

LSi SJI UbJ YB

The elemental impedance matrix [S], is given by

[SLe = fa f {[B*] T[D[BeI - pw2 [e t eIr[]} dA (24)

and YB is the nodal force vector due to surface tractions on the boundary.
Using the top set of equations in Eq. (23) we get

lUll = -[Su] '[Sl{U} (25)

Matrices [Be] and [D] have been derived before [201. Combining Eqs. (18) and
(25) the boundary displacement U8 is found to be

{UB} = (-[A1 l[S 11]'[S] + ABB){UB} + {U}. (26)

Once {UB} is found by solving Eq. (26), {U,} is found from Eq. (25). The
aforementioned method was used to solve for the Z-component of the surface
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displacements in the presence of a normal surface-breaking crack when the
plate is excited by a source on the same surface as the crack. The parameters
used for Poisson's ratio, Young's modulus, and the P and SV velocities were
those of standard window pane glass (see the following Experimental Proce-
dure).

Experimental Procedure

In the experimental part of this study we generate Rayleigh-Lamb waes in
glass samples. Our purpose is two-fold. On the one hand we wish to create an
approximation to the two-dimensional case which is theoretically tractable.
Here we need to determine the source function and study the effect of a crack
on the propagation of the waves in the far field. On the other hand we are
exploring other possible experimental arrangements with the aim of producing
a practical tool for crack detection. In these latter arrangements we do not limit
ourselves to those configurations which lend themselves to theoretical treat-
ments.

We will now describe the experimental apparatus which consists of the
following parts: the source, the receiver, the sample, and the data acquisition
s:, Ntem.

The Source

The source consists of 1.6 mm steel ball bearings impinging on the glass sur-
face. The balls are dropped through a carefully reamed hole in a brass tube. The
hole diameter is just slightly larger than the ball diameter to assure laminar air
flow around the balls and thus reproducible ball impact velocities. The balls are
held by a magnet and released by removing the magnetic field (Fig. 1).

The Receiver

Since we are comparing normal surface displacements obtained from experi-
ments with theoretically derived results, a transducer (receiver) with a known
transfer function is required, i.e., one with an absolute calibration of amplitude
response versus frequency. We have developed such a transducer (see [221),
that alleviates many of the problems which exist with conventional piezoelec-
tric transducers. Electronically this capacitive transducer (CT) is based on the
VideoDisk player development by RCA (Radio Corporation of America). It
detects the changes in a 100 nm gap between a 0.3 mm diameter needle and the
surface of the sample. It responds only to the component of the signal that is
normal to the surface. The frequency response is flat within 7 dB from below 10
kHz to above 6 MHz. The sensitivity of the instrument approaches that of
piezoelectric transducers at 0.44 V/nm with a noise level of 0.004 volts. At a
one to one signal to noise level, its absolute sensitivity is therefore about 0.015
nm. The dynamic range covers over three orders of magnitude from 0.015 nm
to over 50 nm. The sensitivity of the CT is given in Fig. 4 as a function of
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Fig. 4. Sensitivity of the C! versus frequency. Surface displacements were generated by a resonat-
ing rod excited by a piezoelectric transducer. The displacements were calibrated using a Mi-
chaelson interferometer. The CT's response to the resonating rod was then measured to obtain a
calibration of the CT.

frequency (to about I MHz, our range of interest for this experiment). A more
complete calibration of the CT has been completed and is forthcoming.

Data from the CT is recorded on a digital oscilloscope and subsequently
transferred to a workstation class computer. Time-signal averaging as well as
discrete Fourier transform analysis is used in the interpretation of the data.

The Samples

All samples consist of standard window pane, float glass, with crossections of
25.4 mm high by 5.6 mm wide and varying lengths. The glass has the following
properties: compressional wave velocity of 5.64 mm/bLs, shear wave velocity of
3.35 mm/pls, and density of 2610 kg/m 3 which corresponds to a Young's modu-
lus of 72 GPa, and a Poisson's ratio of 0.228.

The manner in which the largest sample (2.28 m long) is supported is
illustrated in Fig. 1. Urethane foam is used to acoustically isolate the sample
from the aluminum support structure. After initial experiments to test the ex-
perimental set-up, a vertical cut 6 mm deep and 0.5 mm wide was made in the
sample 1.4 m from one end, effectively creating a configuration suitable to
detect the surface breaking crack (see Fig. 7). Shorter samples were used and
supported in a manner which allowed access to both the top and bottom of the
sample.

Experimental Results

In support of the theoretical treatment. The two dimensionality assumption
was validated through moving the point source across the width of the sample
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Fig. 5. Confirmation of two-dimensional plate assumption. The impact point of the steel bearings is
moved across the 5.6 mm sample in I mm increments. No appreciable difference was observed
unless the balls were glancing off the edge of the sample.
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Fig. 6. Experimental data and theoretical simulation of the surface displacement at 5H and 8H
without a crack. The experimental traces are multiplied with a cosine window to ease theoretical
computation. The experimental surface response at 5H was used with the Green's function to
compute the source function. This source function was then used for modeling the surface displace-
ment at 8H. The analogous technique was used to calculate the surface displacement at 5H.

and observing the signal resulting from these impacts. Fig. 5 shows the experi-
mental arrangement as well as the observed signals. After propagating through
the thickness of the sample the signal has two-dimensional character, i.e.. it is
independent of where it originates along the width of the sample.
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The nature of the source, the impact of a steel ball bearing, is inherently
simple. Its shape under the two-dimensional assumption was determined from
signals recorded at 5H and 8H from the source (H is the thickness of the sample
25.4 mm, see Fig. 7). These experimentally observed signals together with their
theoretical counterparts are shown in Fig. 6. The experimental results at 5H
were used with the Green's function to compute the source function. This
source function was then used for modeling the surface displacement at 8H.
The same technique was used to calculate the theoretical surface displacement
at 5H.

Scattering in the far field was examined with the arrangement shown in Fig.
7. The source was located at a distance 5H from the crack. The receiver was
positioned at 5H - 5 mm to 5H + 5 mm in 1 mm intervals. The measured
surface displacements for the cases with the crack and without the crack are
shown in Fig. 8. The surface displacement changes only very little over this
range if no crack is present. The forward scattering is the most notable effect of
the crack (receiver locations 6-10). Amplitude spectra were calculated for each
trace to allow comparison with the theoretical calculations. Figure 9 shows the
spectra of the surface displacements at the positions 5H + 1 mm and 5H - I
mm with and without the crack respectively. 1 he experimental data as well as
the theoretical results are shown. The experimental spectra were normalized to
their maximum value and the theoretical values were scaled in such a way that
the value at 44 kHz is identical with the experimental value. Fig. 10 shows the
same spectra in the range 100 kHz to 200 kHz. It is this frequency range where
the introduction of the crack causes the greatest changes in the spectra.
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The ratio of the spectra at the positions 5H - I mm and 5H + 1 mm with
and without the crack are shown in Fig. 11. In Fig. 12 the ratio of the spectra for
the no-crack and the crack case are given for the positions 5H - 1 mm and
5H + 1 mm. Both representations show a distinctive change in the spectrum in
the frequency range 100 kHz to 300 kHz. In Fig. 13 experimentally obtained
spectral amplitudes are plotted as a function of receiver position. Each trace is
normalized to its maximum value. The presence of the crack introduces a
distinctive maximum of the spectral amplitudes in certain frequency ranges.

In search of a crack. To completement the two-dimensional far field studies
reported in the previous section, we performed two additional experiments. In

Fig. 9. Amplitude spectra of normal surface displacements I mm on either side of 5H from the
source with and without a crack. 5H is the distance between the source and the crack. Movement
of the receiver location by 2 mm changes the amplitude spectrum very little without a crack
(bottom figures) and an appreciable amount with a crack (top figures). The solid lines are experi-
mental data, the crosses are the theoretical results.

Fig. 10. Amplitude spectra of Fig. 9. shown expanded between 100 kHz and 200 kHz where the
crack causes the greatest changes in the spectra.
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See previous page for figure captions.
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Fig. 11. Ratio of the spectra at position 5H - 1 mm and position 5H + I mm without a crack and
with the crack.
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Fig. 12. Ratio of the spectra with a crack and without a crack at position 5H - I mm and position
5H + I mm.

one case the source was stationary and the receiver was moved in large inter-
vals (40 mm, nearly 2H) across the sample. In the data shown in Fig. 14 the
ultimate crack, i.e., the end of the sample, is clearly visible. No effect of the
induced crack is discernable however. We confirm that indeed to find small
cracks one must look in detail on a scale that is on the order of the crack
whether that is in the far field as described above or in the near field as we
describe now.

For the near field experiments we placed the receiver and the source on
opposite sides of the sample in order to observe the near field. The base plate of
our transducer does not allow the source to be closer than approximately 50
mm from the receiving probe when both receiver and source are on the same
surface. Figure 15 shows the recorded surface displacements if no crack is
present over a distance of 180 mm from the source position.

In Fig. 16 we show the experimental set-up which we used to search for the
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Fig. 13. Amplitude variation of several frequency groups as a function of position on the sample.

The spectra were produced from the traces shown in Fig. 8.
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crack in the near field. Fig. 17 shows the two sets of four traces recorded for the
cases with and without a crack. The differences between the two data sets are
striking. The crack is easily detectable. In traces 2 and 3 and to a lesser extent
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Fig. 16. Experimental configuration used to study the effect of the crack. Normal surface displace-
ments on the bottom of the sample are measured in response to ball bearing impacts at locations
1,2,3, and 4 above the sample. The results are illustrated in Fig. 17.

in trace 4 the presence of the crack prevents the destructive interference which
occurs during the first 0.03 ms in its absence. For the no-crack case the data in
Fig. 17 represents a subset of those shown in Fig. 15. There too, the regions are
clearly recognizable over which the destructive interferences occur, i.e., at the
20 mm and 25 mm traces and again at the 45 mm and 50 mm traces.
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Fig. 1. Normal surface displacements on the opposing side of the sample from the source. The

souice is placed at one of the four positions shown in Fig. 16. The receiver is stationary and on the
opposite side of the sample. Times after 0. 12 ms are subject to reflections from the ends, and should
be ignored.

Conclusions

In this study we have presented experimental and theoretical treatment of a
two-dimensional wave propagation problem in a plate with and without a sur-
face breaking crack. For the crack free case we showed good correspondence
between the experimentally observed normal displacement time series and the
corresponding theoretically calculated ones when the reciever was located in
the far field of the source. Finite element based calculations of changes in
amplitude spectra in the vicinity of a crack are generally in good agreement
with experimental observations.

High detectability of the crack was achieved when the source and receiver
were located in the near field of the crack. While these observations were not
treated theoretically in this study, together with the theoretical work they may
offer the basis for the design of a practical crack detection gauge. Both the
source and the receiver could be housed in the same physical unit and thus be
easily transportable and usable.
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Then the matrix 11"(z)] have the elements

1 ' = ike i7"_z , 1' = -in2re"' - z

'1 = ikei1I1.
(h - z), iM = i7l2"e

i
= 

(h - z )

12'1 = ihjmei' , 13 = C mikei ez
Im = - iqjme i7?1-(h- z), l =m ike i (h - Z)

i'T, = -aitme i'T)1z, lIT = -ci..e' u2 z

1 3 i= - It'e. (h - z ), 1 4 = cit,.e i 2' (h - Z)

1m-, -bie im'"" z , 12 = aime2mz

4 = biem7"'W
h - z )4, lbn = aimei"71(h - z)

The elements of the 4 x I matrix [ Y7] depend on the direction and location of
the source. If the source is in the x-direction at (x', z') in the mth layer then,

Y = ikAImeimTrz-z'1 _ iq2,,,Bmein:-zr

Yr, = ~ 4 ne~,z'21, = _il'm~imei'?1-lz-z'[ + ikBf,,e'?,,.1z-z'1

IY = _aAI.ei -'_ cBImei'n2I1.-z'1

Prn1 Z =, _T:bA mei.O7,,,z._" aBimeiM2,1z-z.

On the other hand, for the force in the z-direction we have,

13 =_,i3m eiTz-z'I - i7 2mB3mei ' !- 'I

y-, = i,,,A3mei1,,Iz-' + ikB3.ei 2.JzZ'i

I y3 = .. aA3meint7-z-z' ±, cB,3mei21'i !

IyZ= _bA3rnei z-zi + aB 3mei-zz'
Im
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